The quantum double and the universal R matrix for nonstandard deformation of $A_{(n-1)}$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L239
(http://iopscience.iop.org/0305-4470/26/5/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 20:26

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The quantum double and the universal \boldsymbol{R} matrix for non-standard deformation of $\boldsymbol{A}_{(n-1)}$

V Karimipour
Department of Physics, Sharif University of Technology, PO Box 11365-9161, Tehran, Iran and the Institute for Studies in Theoretical Physics and Mathematics, PO Box 19395-1795, Tehran, Iran

Received 23 November 1992

Abstract

The quantum double and the universal R matrix for a new quantum group associated with a non-standard solution of the Yang-Baxter equation is constructed. This quantum group can be regarded as a generalization of $U_{q}(s l(n)$ and our construction reduces to that of $U_{q}(s l(n))$ for a special choice of parameters.

In a recent letter [1] we studied the quantum group associated with a generalization of the R matrix of $s l(n)$, which reads:

$$
\begin{equation*}
R=\sum_{i \neq j}^{n} e_{i i} \otimes e_{j j}+\sum_{i=1}^{n} q_{i} e_{i i} \otimes e_{i t}+\left(q-q^{-1}\right) \sum_{i<j}^{n} e_{j i} \otimes e_{i j} \tag{1}
\end{equation*}
$$

where each q_{i} can independently be equal to q or $-q^{-1}$.
The possibility of setting each individual q_{i} equal to $-q^{-1}$, leads to the appearance of nilpotent elements in this new quantum group which was denoted by $X_{q}\left(A_{n-1}\right)$. Nilpotency of roots was the main puzzling feature of this quantum group which was the sign of some hidden superstructure. We also gave the multiparametric form of the R matrix (1) and showed that the additional parameters, by a suitable ansatz for the generators of the quantum group leads only to the twisting [2] of the Hopf structure. However the question of the quantum double and [3] and the universal R matrix was left unanswered in our previous paper. In this letter we report on the full quantum double construction and the universal R matrix for $X_{q}\left(A_{n-1}\right)$. Due to the technical difficulties for constructing the quantum double, only a few concrete examples are available to this date [4-7]. This letter is aimed to add a new concrete example to the above list.

We now consider the structure of $X_{q}\left(A_{n-1}\right)$ in the Chevalley basis. In [1], $X_{q}\left(A_{n-1}\right)$ was constructed by applying the FRT formalism to the R matrix (1) with the following ansatz of the matrices L^{+}and L^{-}in the equations $R L_{2}^{ \pm} L_{1}^{ \pm}=L_{1}^{ \pm} L_{2}^{ \pm} R$, etc).

$$
\begin{align*}
& L^{+}=\sum_{i=1}^{n} k_{i} e_{i t}+\sum_{i=1}^{n} w\left(\frac{q_{i}}{q_{i+1}}\right)^{1 / 4}\left(k_{i} k_{i+1}\right)^{1 / 2} X_{i}^{+} e_{i, l+1}+\sum_{i<j=1} w\left(\frac{q_{i}}{q_{j}}\right)^{1 / 4}\left(k_{i} k_{j}\right)^{1 / 2} E_{i j}^{+} e_{i j} \tag{2}\\
& L^{-}=\sum_{i=1}^{n} k_{i}^{-1} e_{i j}-\sum_{i=1}^{n} w\left(\frac{q_{i}}{q_{j}}\right)^{1 / 4}\left(k_{i} k_{i+1}\right)^{-1 / 2} X_{i}^{-} e_{i+1, i}-\sum_{i=1>j} w\left(\frac{q_{i}}{q_{j}}\right)^{1 / 4}\left(k_{i} k_{j}\right)^{1 / 2} E_{i j}^{-} e_{i j} \tag{3}
\end{align*}
$$

where $\left(e_{i j}\right)_{k l}=\delta_{k l} \delta_{j k}$ and $w=\left(q-q^{-1}\right)$. It was then shown that upon suitable identification of the elements k_{1} with exponentials of the Cartan generators H_{t}, one could characterize $X_{q}\left(A_{n-1}\right)$ as an algebra generated by the elements $H_{i}, X_{i}^{ \pm},(i=1, \ldots, n)$ and satisfying the following relations:

$$
\begin{align*}
& {\left[H_{i}, H_{j}\right]=0} \tag{4}\\
& {\left[H_{i}, X_{j}^{ \pm}\right]= \pm a_{i j} X_{j}^{ \pm}} \tag{5}\\
& \left(q_{i}-q_{i+1}\right) X_{i}^{ \pm^{2}}=0 \tag{6}\\
& {\left[X_{i}^{ \pm}, X_{j}^{ \pm}\right]=0 \quad \text { if } a_{i j}=0} \tag{7}\\
& {\left[X_{i}^{ \pm}, X_{j}^{-}\right]=\delta_{i j} \frac{q^{H_{i}} \Theta_{i}-q^{-H_{1}} \Theta_{i}^{-1}}{q-q^{-1}}} \tag{8}\\
& q_{i} X_{i}^{ \pm^{2}} X_{i \pm 1}^{ \pm}-\left(1+q_{i} q_{i+1}\right) X_{i}^{ \pm} X_{i \pm 1}^{ \pm} X_{i}^{ \pm}+q_{i+1} X_{i \pm 1}^{ \pm} X_{i}^{ \pm^{2}}=0 . \tag{9}
\end{align*}
$$

Here $\Theta_{i}=\exp \left(t_{i j}\left(A^{-1}\right)\right)_{j k} H_{k}$ where $t_{i j}=\ln \omega_{i j}$ and A is the Cartan matrix of A_{n-1}, and

$$
\begin{equation*}
\omega_{i j}=\frac{q_{i}^{\delta_{i j}-\delta_{1-1, j}} q_{i j+1}^{\delta_{i j}-\delta_{1+1, j}}}{q^{a_{i j}}} . \tag{10}
\end{equation*}
$$

is called the twisting matrix. Relations (6) are the main new features of this quantum group and equations (9) are the generalizations of the deformed Serre relations [3, 8]. This algebra was also equipped with the following Hopf structure:

$$
\begin{align*}
& \Delta\left(H_{i}\right)=H_{t} \otimes 1+1 \otimes H_{1} \tag{11}\\
& \Delta\left(X_{i}^{ \pm}\right)=q^{-H_{i} / 2} \Theta_{u}^{-1 / 2} \otimes X_{i}^{ \pm}+X_{i}^{ \pm} \otimes q^{H_{i} / 2} \Theta_{i}^{1 / 2} \tag{12}\\
& \varepsilon\left(H_{i}\right)=\varepsilon\left(X_{i}^{+}\right)=0 \quad \varepsilon(1)=1 \tag{13}\\
& S\left(H_{i}\right)=-H_{i} \quad S\left(X_{t}^{+}\right)=-\left(q_{i} q_{i+1}\right)^{1 / 2} X_{i}^{+} . \tag{14}
\end{align*}
$$

The above algebra clearly reduces to $U_{q}\left(A_{n-1}\right)$ upon the standard choice of all $q_{1}=q$. However the Serre relations (9), when $q_{i} q_{1+1}$ become trivial identities due to (6) and hence cannot be used to reconstruct the full structure of the algebra and the q-analogues of the Poincare-Birkhoff-Wit (PBW) basis [5]. But the FRX formalism can yield the relations between the q-analogues of roots directly. For this we note that solutions of the FRT equations for (1), can neatly be summarized in the following form: for elements a, b, c, d as the entries in (row, column) $(i, j),(i, l),(k, j)$ and ($k, l)$ respectively, the following relations hold: elements

$$
\begin{array}{lrl}
a b=q_{i}^{-1} b a & c d=q_{k}^{-1} d c \\
c a=q, a c & d b=q_{1} b d \\
b c=c b & a d-d a=\left(q^{-1}-q\right) b c . \tag{17}
\end{array}
$$

This together with the ansatz (2) for L^{+}leads to the following relations for the q-analogues of positive roots. (Negative roots satisfy similar relations.)
(a) The relations between Cartan generators and the positive roots:

$$
\begin{equation*}
\left[H_{k}, E_{i, j+1}\right]=\left(\delta_{k, i}+\delta_{k, j+1}\right) E_{i, j+1} . \tag{18}
\end{equation*}
$$

(b) The relation between simple roots and positive non-simple roots

$$
\begin{align*}
& {\left[X_{i}, X_{i+1}\right]_{q_{i+1}^{-1}}=-E_{i, i+2}} \tag{19}\\
& {\left[X_{i}, E_{i j}\right]_{q_{i}}=0} \tag{20}\\
& {\left[X_{j}, E_{i j}\right]_{q_{j}}=E_{i, j+1}} \tag{21}\\
& {\left[X_{j}, E_{i, j+1}\right]_{q_{j+1}^{-1}}=0} \tag{22}\\
& {\left[X_{i-1}, E_{i j}\right]_{q_{i}^{-t}}=0} \tag{23}
\end{align*}
$$

where $[a, b]_{q}=q^{1 / 2} a b-q^{-1 / 2} b a$. These relations imply the following:

$$
\begin{equation*}
E_{i, j+1}=S_{j} \circ S_{j-1} \circ S_{j-2} \circ \ldots S_{i+1}\left(X_{i}\right) \tag{24}
\end{equation*}
$$

where by S_{i} we mean $a d_{q t}\left(X_{i}\right)$.
(c) The relations between positive non-simple roots

$$
\begin{align*}
& \left(q_{i}-q_{j}\right) E_{i j}^{2}=0 \tag{25}\\
& {\left[E_{i j}, E_{i l}\right]_{q_{l}}=0 \quad j<l} \tag{26}\\
& {\left[E_{i j}, E_{j l l}\right]_{q_{j}-1}=-E_{i l} \quad i<l} \tag{27}\\
& {\left[E_{i j}, E_{h l}\right]=0 \quad i<j<k o r(i>k, j<l)} \tag{28}\\
& {\left[E_{i j}, E_{k l}\right]=\left(q^{-1}-q\right) E_{l l} E_{k j} \quad j>k>i} \tag{29}
\end{align*}
$$

where we have suppressed all the relations between commuting elements.
$X_{q}\left(A_{n-1}\right)$ has two Hopf subalgebras (Borel Structures) generated respectively by H_{i}, X_{j}^{+}and H_{i}, X_{j}^{-}. We denote them by B and B^{-}. The quantum double as an algebra is isomorphic to $B \otimes B^{\prime}$ where B^{\prime} is the dual of B with opposite comultiplication. The dual itself is denoted by B^{0}. For the construction of the quantum double and the R matrix, it is most convenient to redefine the generators as follows \dagger :

$$
\begin{align*}
& E_{i j} \rightarrow e_{i j}=q^{H_{j i} / 2} \Theta_{i j}^{1 / 2} E_{i j} \tag{30}\\
& F_{i j} \rightarrow f_{i j}=q^{-H_{i j} / 2} \Theta_{i j}^{-1 / 2} F_{i j} \tag{31}
\end{align*}
$$

where $H_{i j}$ and $\Theta_{i j}$ stand respectively for $H_{i}+H_{i+1}+\ldots H_{j-1}$ and $\Pi_{h=i}^{j-1} \Theta_{h}$. In what follows we sometimes denote $e_{i, i+1}$ and $f_{i+1, i}$ by e_{i} and f_{i} respectively.

The q-analogue of the PBw basis for B is chosen as follows:

$$
\begin{equation*}
\xi^{\alpha}=H_{1}^{\alpha_{1}} H_{2}^{\alpha_{2}} \ldots H_{n-1}^{\alpha_{n-1}} \prod_{i<j} e_{i j}^{\alpha_{j}} \tag{32}
\end{equation*}
$$

where by $\hat{\Pi}$ we mean normal ordering in the sense of [9], according to which the descendant of two roots lies between them (i.e. $\left[e_{\alpha}, e_{\beta}\right]$ lies between e_{α} and e_{β}). B^{0} is generated by the elements $\eta_{1}, \eta_{2}, \ldots, \eta_{n-1}, Y_{i j}, 1<i<n$ such that the evaluation of η_{t} (resp. $Y_{j j}$) on H_{i} (resp. $e_{i j}$) are 1 and their evaluation on any other monomial is zero. The algebra and co-algebra structure of B^{0} is then defined to be [3]

$$
\begin{equation*}
U V(M)=U \otimes V(\Delta M) \quad \Delta U(M \otimes N)=U(M N) \tag{33}
\end{equation*}
$$

for U and $V \in B^{0}, M$ and $N \in B$.

In the above evaluations one must carefully use the commutation relations to arrange every monomial occurring in the calculations in the canonical form which has been chosen for the basis of B^{θ}. Comparison of the evaluation of $U V$ and $V U$ on elements of the basis, will uniquely specify the commutation relations between all pairs of elements. The coproducts are also obtained in a similar manner. From (33) it is straightforward to prove the following:

Proposition 1.
(i) $\left[\eta_{i}, \eta_{j}\right]=0$
(ii) $\left[\eta_{t}, Y_{j}\right]=-\left(h \delta_{i j}+t_{j k} a_{k s}\right) Y_{j} \quad$ where $q=e^{h}$
(iii) $\left(q_{i}-q_{i+1}\right) Y_{i}^{2}=0$
(iv) $\Delta\left(\eta_{i}\right)=\eta_{i} \otimes 1+1 \otimes \eta_{t}$
(v) $\Delta\left(Y_{i}\right)=1 \otimes Y_{i}+Y_{i} \otimes e^{-a_{i j} \eta_{j}}$.

To complete the structure of the quantum double, we also need the commutation relation between the following pairs: $\left(H_{i}, \eta_{j}\right),\left(H_{i}, Y_{j}\right),\left(e_{i}, \eta_{j}\right)$, and $\left(e_{i}, Y_{j}\right)$.

The prescription for obtaining these relations can be manipulated into the following formula [10]:

$$
\begin{equation*}
a b=T \circ \gamma \circ Z\left(\Delta^{\prime 2}(a) \otimes\left(S_{0} \otimes i d \otimes i d\right) \Delta^{2}(b)\right) \tag{34}
\end{equation*}
$$

where $a \in B^{0}, b \in B, \Delta^{2}=(\Delta \otimes i d) \Delta, \Delta^{\prime}$ is the opposite co-multiplication in B^{0} and S_{0} is the skew antipode [3]. $Z: B^{\circ 03} \otimes B^{\otimes^{3}} \rightarrow B^{0} \otimes B$ is the evaluation between the pairs $(1,4)$ and $(3,6), \gamma$ is the mutliplication map $\gamma: x \otimes y \rightarrow x y$ and T is the transposition $T(x y)=y x$.

Using (34) we can prove the following:

Proposition 2.

(i) $\left[\eta_{i}, H_{j}\right]=0$
(ii) $\left[\eta_{i}, e_{j}\right]=\left(h \delta_{i j}+t_{j k} a_{k 1}^{-1}\right) e_{j}$
(iii) $\left[H_{i}, Y_{j}\right]=-a_{j i} Y_{j}$
(iv) $\left[Y_{i}, e_{j}\right]=\delta_{i j}\left(e^{-a_{i k} \eta_{k}}-q^{H_{i} \Theta_{i}}\right)$.

Equations (4-12) and propositions 1 and 2 completely specify the structure of the quantum double. According to Drinfeld [3], the quantum double contains the original algebra as Hopf subalgebra. This is seen in our case via the following identification:

$$
\begin{equation*}
\eta_{i} \rightarrow c_{i k} H_{k} \quad Y_{i} \rightarrow\left(q-q^{-1}\right) f_{i} \tag{35}
\end{equation*}
$$

Where $C_{t j}$ is the matrix:

$$
\begin{equation*}
C=h A^{-1}+A^{-1} h A^{-1} \tag{36}
\end{equation*}
$$

In (36) A is the Cartan matrix of $s l(n), h=\ln q$ and T is the twisting matrix (10). The universal R matrix [3] in $B \otimes B^{\prime}$ is given by

$$
\begin{equation*}
R=\sum \xi_{\alpha} \otimes \xi^{\alpha} \tag{37}
\end{equation*}
$$

where ξ_{α} is the dual basis of ξ^{α}. The universal R matrix in $X_{q}\left(A_{n-1}\right)$ is then obtained by applying the projection (35) to the R-matrix in the quantum double. To carry out this step we note that with the normal ordering in (33) the following basis is dual to ξ^{α} up to normalization.

$$
\begin{equation*}
\xi_{\beta}=\prod_{i=1}^{N-1} \eta_{1}^{\beta_{1}} \prod_{i<j} Y_{i j}^{\beta_{i j}} \tag{38}
\end{equation*}
$$

where we mean the same ordering as in (34). To obtain the normalization factors we need the following:

Lemma 3.
(i) $\eta_{i}^{r}\left(H_{j}^{s}\right)=\delta_{i j} \delta_{r s} s$!
(ii) $Y_{i j}^{n}\left(e_{r s}^{m}\right)=\delta_{i r} \delta_{j s} \delta_{m n}\left[n,\left(q, q_{j}\right)^{-1}\right]$!
where $[n, \alpha]!=\prod_{k=1}^{n}\left(\alpha^{k}-1\right) /(\alpha-1)$.

Corollary.

(a) If both q_{i} and q_{j} are untwisted (i.e. $q_{i}=q_{j}=q$) then $Y_{i j}^{n}\left(e_{i j}^{n}\right)=\left[n,(q)^{-2}\right]$! as in the standard case $[4,10]$.
(b) If only one of the q_{i} or q_{j} are twisted, $\left(q_{1} q_{j}=-1\right)$ then we have

$$
\left[n,\left(q_{i} q_{i}\right)^{-1}\right]!=[n,-1]!= \begin{cases}0 & n>1 \\ 1 & n \leqslant 1\end{cases}
$$

This is in accord with the fact that that when $q_{i} \neq q_{j}$ then $e_{i j}^{2}=Y_{i j}^{2}=0$ and monomials of $e_{i j}$ and $Y_{i j}$ with powers greater than 1 do not belong to the Poincare basis.

Now the normalization factors are given by

$$
\begin{equation*}
\xi_{\alpha}\left(\xi_{\alpha}\right)=\prod_{i} \alpha_{i}!\prod_{i<j}\left[\alpha_{i j},\left(q_{i} q_{j}\right)^{-1}\right]!\equiv N_{\alpha} \tag{39}
\end{equation*}
$$

from equations (32, 37-39), the final form of the universal R matrix in the quantum double is obtained:

$$
\begin{equation*}
R=\mathrm{e}^{\sum \pi=1} \eta_{i} \otimes H_{i} \prod_{\alpha_{i j}} E_{\left(q_{1} q_{j}\right)^{-1}}\left(Y_{i j} \otimes e_{i j}\right) \tag{40}
\end{equation*}
$$

where $E_{q}(x)$ is the q-exponential function:

$$
E_{q}(x)=\sum_{r=0} \frac{x^{r}}{[r, q]!}
$$

On passing to the quotient Hopf algebra via the projection (35), we will obtain the universal R matrix in $X_{q}\left(A_{n-1}\right)$

$$
\begin{equation*}
\left.R=\mathrm{e}^{\sum_{i=1}^{n-1} e_{i k} H_{k} \otimes H_{i}} \bigcap_{\alpha_{i j}} E_{\left(q_{i}, q_{j}\right)^{-1}\left(w f_{i j}\right.} \otimes e_{i j}\right) \tag{41}
\end{equation*}
$$

Note that in the standard case, we have $t_{i j}=0$ and hence $c=h A^{-1}$ and $E_{\left.\left(q_{1},\right)^{\prime}\right)^{-1}}=E_{q}-2$ which shows that the above R matrix reduces to the R matrix of $U_{q}\left(A_{n-1}\right)$ (compare with $[4,10]$.

In conclusion, in the category of quasitriangular Hopf algebras, there are many more objects than the quantized enveloping algebras of Drinfeld [3] and Jimbo [8]. These are the quantum groups which are associated to the non-standard solution of Yang-Baxter equation (see [11, 12] and references therein). The quantum group $X_{q}\left(A_{n-1}\right)$ is one of these objects. If one can clarify the relation of $X_{q}\left(A_{n-1}\right)$ with the quantum supergroup $U_{q}(s I(n \mid m))$, then the results of the present letter can be used to construct the quantum double for the superalgebra $s l(n \mid m)$.

I would like to thank A Aghamohamadi for interesting discussions and V K Dobrev for very valuable comments on an earlier version of this letter. This research was supported financially by Sharif University of Technology and the Institute of Theoretical Physics and Mathematics, Tehran.

References

[1] Aghamohammadi A, Karimipour V and Rouhani S 1993 Multiparametric non-standard quantization of A_{n-1} J. Phys. A: Math. Gen. Preprint SUTDP/92/70/5
[2] Reshetikhin Yu N 1990 Twisted quasitrianguiar Hopf algebras and multiparametric quantum groups Lett. Math. Phys.
[3] Drinfeld V G 1986 Quantum Groups Proc. ICM (Berkeley) ed A M Gleason (Providence, RI: Ams. Math. Soc.) 798-820
[4] Faddeev L et al 1989 Quantization of Lie groups and lie algebras Alg. Anal. 1 178-206 (in Russian)
[5] Rosso M 1989 An analogue of PBW theorem and the universal R matrix for $U_{h} s l(N+1)$ Commun. Math. Phys. 124 307-18
[6] Kirrilov A N and Reshetikhin Yu N 1990 Commun. Math. Phys. 134421
[7] Kuslish P P and Reshetikhin Yu N 1989 Lett. Math. Phys. 18143
[8] Jimbo M 1989 Int. J. Mod. Phys. A 4 3759-77
[9] Khoroshkin S M and Tolstoy V N 1991 Commun. Math. Phys. 141 599-617
[10] Burrough N 1991 The universal R matrix for $U_{q} s l(3)$ and beyond Commun. Math. Phys. 127 109-28
[11] Majid S and Rodrigues-Plaza M J Universal R matrix for a non-standard quantum group and superization Preprint DAMTP/91-47
[12] Ge M L and Wu A C T 1991 J. Phys. A: Math. Gen. 24725

